
Design of Code Division Multiple Access Filters Using Global

Optimization Techniques

Benjamin Ivorra1, Bijan Mohammadi2 and Angel Manuel Ramos1.

1 Departamento de Matemática Aplicada,
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Abstract

A semi-deterministic global optimization method based on the search of a suitable initial condi-

tion for a given optimization algorithm is presented. This method is applied to the design of code

division multiple access filters used in data transmission and is compared, in term of complexity and

final design, with a genetic algorithm.
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1 Introduction

The use of optical fibers offering bandwidth of several TeraHertz per telecommunication window in the
telecommunication sector has known important developments in the last decade (Skaar J. et al., 1998;
Yang C.C., 2008) with applications in television by cable or cell phones (Takeshi F. et al., 2007; Yang
H.K. et al., 1999). However, to be fully efficient, the fibers should allow multiple access. This means
allowing various persons (called users) to send and receive messages in the fiber at the same time (See
Figure 1).

There exist three main schemes of multiple access: Time Division Multiple Access (TDMA) (Han
K.E. et al., 2006) which allows to consider a great number of users but requires fast synchronization,
Wavelength-Division Multiplexing (WDM) (Bock C. et al., 2005) which sometimes requires precise ad-
justments, and Code Division Multiple Access (CDMA) (Moreau Y. et al., 2000) which primarily allows
a great flexibility in multiple accesses. This last technique presents various advantages such as high fi-
delity and high resistance to signal perturbations, secured communications and low power consumption
(Viterbi A.J., 1995).

In this paper, we focus on the design of a particular optical filter based on the CDMA technique.
Currently, there is an important demand of optimization methods for the design of such filters. However,
those methods need to perform global optimization as it has been observed that the functionals involved
in the design have multiple minima (Skaar J. et al., 1998).

Genetic algorithms appear then as a natural choice (Forrest S., 1993; Goldberg D., 1989). But, we
would like to see if the target cannot be achieved with a lower computational effort taking advantage of
low-complexity features of a semi-deterministic global optimization method (Ivorra , 2006; Ivorra B. et
al., Submitted, 2007). In order to check the efficiency of the method, we compare the results with those
obtained with a genetic algorithm.
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Figure 1: Multiple access technique principle: Users A,B and C send at the same time a message in a
communication device. The multiple access technique allows to properly deliver each message.

The paper is organized as follows. Section 2 briefly describes the CDMA filter, its mathematical
modeling and the design problem. Section 3 presents the optimization methods. Finally, in Section
4 we show a particular design problem and compare the obtained results in term of numerical and
implementation performances.

2 CDMA filter design problem

2.1 CDMA principle

In the basic technique of CDMA, the bits ’1’ or ’0’ of a binary message, send by an user, are replaced
at the level of the transmitter by codes attributed to this user.

We can consider binary codes of length Ncode ∈ IN. The code for the bit ’1’ of a particular user ’A’ is
denoted by cA

1 ∈ {0, 1}Ncode and its complement, denoted by cA
0 = −(cA

1 −1), is used for ’0’ (for instance,
if Ncode = 8, the possible codes are cA

1 =’10110011’ and cA
0 =’01001100’). During this work we will only

focus on this binary coding technique.
Zaccarin and Kavehrad (Kavehrad M. et al., 1995) and later Lam (Lam C. et al., 1999) suggested to

use spectra compound by a set of wavelengths Λ = (λi)
Ncode

i=0 in order to represent those codes (i.e. the
reflectivity of λi is equal to c(i) for i = 1, ..., Ncode, where c is the considered code, and zero elsewhere).
One way to generate such a spectrum is to consider Sampled Fiber Bragg Gratings (SFBG).

SFBGs are optical fibers based on a periodic perturbation of their refractive effective index, obtained
by exposing the optical fiber to UV radiations (Erdogan T., 1997). The objective of SFBGs are to
reflect predetermined wavelengths and to let other wavelengths pass (Chow J. et al., 1996; Wei D. et al.,
2000). They can be easily hybridized with other optical devices (Helmers H. et al., 2002) such as optical
isolators presented in Section 2.2.

2.2 CDMA device to be designed

We propose to design a part of a transmitter based on the CDMA codification presented in Section
2.1. More precisely, we consider the code separator of a particular user ’A’ depicted in Figure 2. The
objective of this code separator is to separate the spectra corresponding to cA

1 and cA
0 . It is formed by

three components:
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• An optical isolator where forward signals are directed to a CDMA filter and backward ones to a
classical optical fiber.

• A CDMA filter compound by a SFBG that reflects the spectrum corresponding to cA
1 .

• A classical optical fiber that let a signal pass.

Here, we focus on the design of the CDMA filter. To do so, we first present a mathematical model
used to compute the reflected spectrum of SFBGs.

Classical optical fiber

Reflected signal

Optical Isolator

Input signal

Input signal

Spectrum corresponding to c

Spectrum corresponding to c1

A

0

A

SFBG reflecting code cA

1

Figure 2: Code separator.

2.3 SFBG reflected spectrum evaluation model

We assume that in a SFBG, for any wavelength λ (µm) in a considered transmission band [λmin, λmax],
there exist only two counter-propagating guided modes: a transmitted and a reflected mode, of respective
amplitudes T (., λ) and R(., λ). Due to the presence of a dielectric perturbation, those modes are coupled
through the following equations (Skaar J. et al., 1998):
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
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
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


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







dB

dz
(z, λ) = iσ̂(z, λ)B(z, λ) + iκ(z, λ)C(z, λ) , λ ∈ [λmin, λmax], z ∈ [0, L],

dC

dz
(z, λ) = −iσ̂(z, λ)C(z, λ) − iκ(z, λ)B(z, λ) , λ ∈ [λmin, λmax], z ∈ [0, L],

B(0, λ) = 1 , λ ∈ [λmin, λmax],

C(L, λ) = 0 , λ ∈ [λmin, λmax],

(1)

where B(z, λ) = T (z, λ) exp(iζ(λ)z − φ(z)
2 ), C(z, λ) = R(z, λ) exp(−iζ(λ)z + φ(z)

2 ), L is the fiber length

in millimeters (mm), σ̂(z, λ) = ζ(λ) + β(λ) δneff (z)
neff

− 1
2

dφ
dz

(z) is the demi-coupling coefficient, κ(z, λ) =

ν
2β(λ) δneff (z)

neff
is the associated-coupling coefficient, ζ(λ) = β(λ) − π

Θ is the detuning parameter, β(λ) =
2πneff

λ
is the propagation constant, neff is the unperturbed refractive effective index, Θ is the nominal

grating period (µm), δneff(z) is the slowly varying index amplitude change over the grating (called
apodization) produced by the UV exposure which is periodic of period P (mm), ν is the fringe visibility
and φ(z) is the slowly varying index phase change (also called chirp).

In addition, in order to obtain a SBFG easy to build, we consider fibers with no chirp (i.e. φ(z) = 0)
and the fringe of visibility is considered to be ν = 1.

System (1) can be solved using a simplified transfer matrix method (Erdogan T., 1997).
The reflected spectrum, or power reflection function r, of the considered SFBG is defined as:

λ 7→ r(λ) =

∣

∣

∣

∣

C(0, λ)

B(0, λ)

∣

∣

∣

∣

2

. (2)
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2.4 Optimization problem

We consider that the code cA
1 is represented by the following set of wavelengths:

Λ1
A = {λi|i = 1...N,N ≤ Ncode, λi ∈ Λ}. (3)

Due to the fact that the considered SFBG introduced in Section 2.3 can only generate symmetric
reflected spectra (Ivorra B. et al. in IJCSE, 2006), we want to design a SFBG that reflects Λ1

A and also
the symmetrical wavelengths of Λ1

A centered around a wavelength λc. This new set of wavelengths is
denoted by Λ1

A,λc
.

This problem can be reformulated considering that each SFBG with no chirp can be characterized by
its apodization z 7→ δneff(z). Denoting by Ωapo the search space of all admissible apodization profiles,
we define a cost function h0, to be minimized on Ωapo, by:

h0(x) =

∫

[λmin,λmax]

(rx(λ) − rt(λ))2dλ, (4)

where rx(.) is the power reflection function (2) of the SFBG with an apodization associated to x ∈ Ωapo

and rt is the target power reflection function given by:

rt(λ) =







1 if λ ∈ Λ1
A,λc

,

0 elsewhere.
(5)

We must include some restrictions on Ωapo in order to find a SFBG with an apodization profile with
suitable characteristics for practical realization. Indeed, complex apodization profiles would require
high-level and expensive mastering of the writing process. In particular, we are interested by admissible
profiles which have a low number of π-phase shifts (sign changes in the profile), are smooth and have a
maximum index variation nmax of less than 5.10−4. Thus, apodization profiles are generated by spline
interpolation through a reduced number of NS points equally distributed along the first half of the profile
and completed by parity. NS is chosen high enough to ensure enough peaks in the reflected spectra but
small enough for the profile to remain admissible.

Thus, the corresponding search space of the optimization problem is a hypercube:

ΩNS
= [−nmax, nmax]

NS , (6)

where nmax is a design constraint.
The discrete version of the cost function (4) on ΩNS

is defined by:

h0,Nc
(x) =

Nc−1
∑

i=1

(λi+1 − λi)

2
[(rx(λi+1) − rt(λi+1))

2 + (rx(λi) − rt(λi))
2]. (7)

In the above expression, the power reflection function rx of the SFBG with an apodization associated
with x ∈ ΩNS

is evaluated on Nc wavelengths equally distributed on the transmission band [λmin, λmax].
Therefore, the CDMA filter design problem can be formulated as the following optimization problem:











Find xm ∈ ΩNS
such that

h0,Nc
(xm) = min

x∈ΩNS

h0,Nc
(x).

(8)

3 Global optimization methods

We consider the following minimization problem:











Find xm ∈ Ω such that

h0(xm) = min
x∈Ω

h0(x),
(9)
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where h0 : Ω → IR is the cost function and x is the optimization parameter belonging to a convex search
space Ω ⊂ IRN , with N ∈ IN. We assume h0 ∈ C0(Ω, IR) is a coercive function (i.e. lim‖x‖→+∞ h0(x) =
+∞).

3.1 Genetic algorithms

Genetic algorithms, denoted as GA, approximate the solution of (9) through stochastic processes based
on an analogy with the Darwinian evolution of species (Forrest S., 1993).

A first family, called ’population’, X0 = {x0
j ∈ Ω, j = 1, ..., Np} of Np ∈ IN possible solutions of the

optimization problem, called ’individuals’, is randomly generated in Ω.
Starting from this population, we build recursively Ng ∈ IN new populations Xi+1 = {xi+1

j ∈ Ω, j =
1, ..., Np} with i = 0, .., Ng − 1, called ’generations’, via three main steps:

Step 1- Selection: Each individual, xi
j , j = 1, ..., Np is ranked with respect to its cost function

value h0(x
i
j) (i.e. the lower is h0(x

i
j) the higher is its ranking). Then, Np individuals

are randomly selected to become ’parents’, with a probability depending on the previous
ranking (individuals with better ranking have higher chances to be selected) and with
eventual repetitions.

Step 2- Crossover: This step leads to a data exchange between two parents and the apparition
of two new individuals called ’children’. We determine, with a fixed probability pc ∈ [0, 1],
if two consecutive parents should exchange data (the created children are projected in Ω)
or if they are directly copied into the new population.

Step 3- Mutation: This step leads to new parameter values for some individuals of the pop-
ulation. For each individual, we determine with a fixed probability pm ∈ [0, 1] if it is
randomly perturbed (the perturbed individual is projected in Ω) or not.

With these three basic evolution processes, it is generally observed that the best obtained individual
is getting closer after each generation to the optimal solution of the problem (Goldberg D., 1989).

At the end of the algorithm, after Ng iterations, the GA returns an output denoted by A0(X
0;Np, Ng,

pm, pc) = argmin{h0(x
i
j)/xi

j ∈ Xi, i = 1, ..., Ng, j = 1, ..., Np).
These algorithms do not require sensitivity computation, perform global and multi-objective opti-

mization and are easy to parallelize. However, their drawbacks remain their computational complexity,
their slow convergence and their lack of accuracy. Since a fine convergence is difficult to achieve with
GAs, it is recommended when it is possible, to complete the GA iterations by a descent method (Dumas
L. et al., 2004).

A complete description of the GA considered during tis work can be found in the following literature
(Ivorra , 2006; Ivorra B. et al., Accepted).

3.2 Semi-deterministic global optimization method

3.2.1 General description of the method

We consider an optimization algorithm A0 : V → Ω, called ’core optimization algorithm’, to solve (9).
We assume the existence of a suitable initial condition v ∈ V such that the output returned by A0(v)

approaches a solution of (9). In this case, solving numerically (9) with the considered core optimization
algorithm can be formulated as:







Find v ∈ V such that

v ∈ argminw∈V h0(A0(w)).
(10)

In order to solve (10), we propose to use a I-layer semi-deterministic algorithm AI : V → V , with
I ∈ IN, based on line search methods (see, for instance, (Mohammadi B. et al., 2002)) called here, for
the sake of simplicity, ’Semi-Deterministic Algorithm’ (SDA) and built recursively as following:
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For i = 1, 2, ..., I, we introduce hi : V → IR by

hi(v) = hi−1(Ai−1(v)), (11)

and we consider the problem:






Find v ∈ V such that

v ∈ argminw∈V hi(w).
(12)

Problem (12) is equivalent to (10) and is solved using the algorithm Ai : V → V that, for each v1 ∈ V ,
returns an output given by

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈Oi(v1,v2)hi(w), where Oi(v1, v2) = {v1 + t(v2 − v1), t ∈ IR} ∩ V , using
a line search method.

Step 3- Return v.

The line search minimization algorithm in Step 2 is defined by the user.
When I > 1, due to the fact that line search directions Oi(v1, v2) in Ai, for i = 1, ..., I − 1, are

constructed randomly, the algorithm AI perform a multi-directional search of the solution of (10).
A detailed description of this method and various implementation schemes can be found in the

following literature (Ivorra , 2006; Ivorra B. et al., Submitted, 2007; Debiane L. et al., 2006; Ivorra B.
et al. in IJNME, 2006).

In Sections 3.2.2 and 3.2.3, we present two particular implementations of the SDA, considering descent
and genetic algorithms as core optimization algorithms in the case where h0 is a non negative function
with zero as the minimum value.

3.2.2 SDA implementation with descent core optimization algorithms

We consider core optimization algorithms that come from the discretization of the following initial value
problem (Mohammadi B. et al., 2002):







M(x(t), t)xt(t) = −d(x(t)), t ≥ 0,

x(0) = x0,
(13)

where t is a fictitious time, xt = dx
dt

, M : Ω × IR → MN×N (where MN×N denotes the set of matrix
N ×N) and d : Ω → IRN is a function giving a descent direction. For example, assuming h0 ∈ C1(Ω, IR),
if d = ∇h0 and M(x, t) = Id (the identity operator) for all (x, t) ∈ Ω×IR we recover the steepest descent
method.

According to previous notations, we use V = Ω and denote by A0(x0) := A0(x0; t0, ǫ) the solution
returned by the core optimization algorithm starting from the initial point x0 ∈ Ω after t0 ∈ IN iterations
and considering a stopping criterion defined by ǫ ∈ IR. In this case, Problem (10) can be rewritten as:







Find v ∈ Ω such that

v ∈ argminw∈Ωh0(A0(w))
(14)

We consider a particular implementation of the algorithms Ai, i = 1, ..., I, introduced previously, to
solve (14). For i = 1, ..., I, Ai(v1) is applied with a secant method (a low-cost method well adapted to
find the zeros of a function (Mohammadi B. et al., 2002)) in order to perform the line search. It reads:

Step 1- Choose v2 ∈ Ω randomly.
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Step 2- For l from 1 to tli ∈ IN execute:

Step 2.1- If hi(vl) = hi(vl+1) go to Step 3

Step 2.2- Set vl+2 =projΩ(vl+1 − hi(vl+1)
vl+1−vl

hi(vl+1)−hi(vl)
)

where projΩ : IRN → Ω is a projection algorithm over Ω defined by the user.

Step 3- Return the output: argmin{hi(vm),m = 1, ..., tli}

This algorithm is denoted by SDDA.

3.2.3 SDA implementation with genetic core optimization algorithms

When a GA, described in Section 3.1, is used as the core optimization algorithm, problem (10) can be
rewritten as:







Find X0 ∈ V = ΩNp such that

X0 ∈ argminw∈ΩNp h0(A0(w))
(15)

where A0(X
0) := A0(X

0;Np, Ng, pm, pc) with Np, Ng, pm, pc parameters of the GA that here are
considered fixed.

The solution of (15) may be determined, for instance, by using the SDA implementation presented
in Section 3.2.1. However, a first numerical study (see (Ivorra , 2006) for more details) shows that the
following variation of previous algorithms Ai (with i = 1, ..., I) is better adapted to the GA case. Let
X0

1 = {x0
1,j ∈ Ω, j = 1, ..., Np}. Then Ai(X

0
1 ) reads:

Step 1- For l going from 1 to tli ∈ IN execute:

Step 1.1- Set ol =argmin{h0(x) : x ∈ Ai−1(X
0
l )}

Step 1.2- We construct X0
l+1 = {x0

l+1,j ∈ Ω, j = 1, ..., Np} as following:

∀j ∈ {1, ..., Np}, if h0(ol) = h0(x
0
l,j) set x0

l+1,j = x0
l,j

else set x0
l+1,j = projΩNP (x0

l,j − h0(ol)
ol−x0

l,j

h0(ol)−h0(x0
l,j

)
)

where projΩNP : IRN×NP → ΩNP is a projection algorithm over ΩNP defined by the
user.

Step 2- Return the output: argmin{hi(X
0
m),m = 1, ..., tli}

This version of the algorithm intends to optimize, individual by individual, the initial population of
Ai−1. For each individual in the initial population:

• If there is a significant evolution of the cost function value between this individual and the best
element found by Ai−1, the secant method used in Step 1.2 generates, in the optimized initial
population, a new individual closer to this best element.

• If not, the secant method allows to create a new individual far from the current solution given by
Ai−1.

Numerical experiments show that this coupling reduces the computational complexity of GAs (Ivorra
, 2006; Ivorra B. et al., Accepted; Ivorra B. et al. in IJNME, 2006). In particular, this allows to consider
smaller Np and Ng numbers, compared with the case of applying GA alone. This algorithm is denoted
by (SDGA).
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4 Numerical test

4.1 Parameters in algorithms

We consider a CDMA binary codification of length Ncode = 8 represented by the set of wavelengths Λ = {
λ1 = 1.5465µm, λ2 = 1.5473µm, λ3 = 1.5481µm, λ4 = 1.5489µm, λ5 = 1.5497µm, λ6 = 1.5505µm,
λ7 = 1.5513µm, λ8 = 1.5521µm}.

The code cA
1 =’10110011’ is characterized by Λ1

A = [λ1, λ3, λ4, λ7, λ8]. We are interested to design a
CDMA filter that reflects Λ1

A,λc
with λc = 1.5525µm. This spectrum is depicted by Figure 3.
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Figure 3: Target reflected spectrum presented in Section 4.1.

The SFBG characteristics are set to neff = 1.45, L = 100mm, P = 1.039mm and Θ = 0.53µm.
The SFBG apodization profiles are generated by NS = 9 interpolation points with nmax = 5.10−4

and the functional (7) is evaluated considering Nc = 1200 wavelengths in the transmission band
[1.545µm, 1.56µm]. Those values have given good results (apodization profiles easy to implement) con-
sidering the problem of designing a multichannel optical filter of 16 peaks (Ivorra B. et al. in IJCSE,
2006).

In order to solve problem (8), considering previous values, we use the optimization methods presented
in Section 3 (i.e. GA, SDDA and SDGA) with the following parameters:

• For SDDA: We use a two-layer algorithm (i.e. I = 2) with t0 = 10, tl1 = 5, tl2 = 5 and ǫ = 0.
The initial point v1 for A2 is generated randomly in ΩNS

. We consider t0 = 10 iterations of the
steepest descent algorithm (Mohammadi B. et al., 2002), which is is used as the core optimization
algorithm A0. The gradient of h0,Nc

used in A0 is approximated considering a finite difference
method.

• For SDGA: we use a one-layer algorithm (i.e. I = 1) with tl1 = 25. The parameters considered for
the GA, which is used as the core optimization algorithm, are the following:

– The generation number and population size are set to Ng = 10 and Np = 10, respectively.

– The selection is a roulette wheel type (Goldberg D., 1989) proportional to the rank of the
individuals in the population.

– The crossover is barycentric in each coordinate with a probability of pc = 0.45.
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– The mutation process is non-uniform with a probability of pm = 0.35.

– A one-elitism principle, that consists in keeping the current best individual in the next gen-
eration, has also been imposed.

– 10 iterations of the steepest descent method are performed at the end of the SDGA starting
from the obtained solution.

• For GA: We use the same stochastic processes than SDGA but with a different set of parameters:
Ng = 30, Np = 180, pc = 0.35, pm = 0.15. 10 iterations of the steepest descent method are
performed at the end of the GA starting from the obtained solution.

SDDA, SDGA and GA applied with those sets of parameters have been validated on various bench-
mark test cases (Ivorra , 2006; Ivorra B. et al., Submitted) and industrial applications (Ivorra B. et al.
in IJNME, 2006; Hertzog D.E. et al., 2006; Debiane L. et al., 2006; Isebe D. et al., 2008), in particular
on the design of pass-band and multichannel optical filters (Ivorra B. et al. in IJCSE, 2006; Ivorra ,
2006).

4.2 Results and discussion

Figure 4 shows the apodization profiles obtained with SDDA, SDGA and GA and their associated
reflected spectra. The convergence histories of each optimization process are presented in Figure 5.
Results reported in this Section are summarized in Table 1.

For SDDA, the initial and final cost function h0,Nc
are equal to 12.84 and 2.09, respectively. The

total number of functional evaluations is about 3000. SDDA optimization takes approximatively 10
hours real time in a 3.4GHz PC computer with 1 Gb Memory.

For SDGA, the final cost function h0,Nc
is equal to 2.31. The total number of functional evaluations

is about 2700. SDGA optimization takes 9 hours.
For GA, the final cost function h0,Nc

is equal to 2.38. The total number of functional evaluations is
about 5600. GA optimization takes 18 hours 40 minutes.

The three optimized apodization profiles have different shapes and are situated in distinct attraction
basins of the function h0,Nc

. This points out the fact that h0,Nc
is highly non convex and the optimization

problem (8) difficult to solve. This is confirmed by observing the convergence history of the SDDA, which
shows that, during the optimization process, the steepest descent algorithm has visited various attraction
basins and found different local minima.

From a numerical points of view, both SDDA and SDGA have found better results than GA and are
less time consuming.

From an implementation point of view, all optimized apodization profiles present interesting charac-
teristics:

• As we can observe on Figure 3, the reflected spectra associated to the optimized profiles correspond
to good approximations of the target reflected spectrum.

• The optimized apodization profiles (see Figure 4) are suitable for practical implementation. Indeed,
the number of necessary π-phase shifts is 5 (a number easy to implement), the index modulation
of the profile is uniformly distributed along the pattern and the maximum index variation of the
profile is inferior to 3.10−4, which is a reasonable level (Ivorra B. et al. in IJCSE, 2006).

• A stability analysis on the reflected spectra, when applying a random perturbation of 10% on
the optimized apodization profiles, show that all optimized results have a small variation of ≈
4.3% on their reflected spectrum. This is important because, due to technical limitations, small
perturbations could appear in the apodization profile during the writing process.
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Figure 4: (Left) Optimized apodization profiles and (Right) associated reflected spectrum obtained by
SDDA (Up), SDGA (Middle) and GA (Bottom) optimization methods.
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Figure 5: Best element convergence history vs. iterations (—) and global convergence history vs.
iterations (...) for SDDA (Up). Best element convergence history vs. iterations for SDGA (Middle)
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Optimization Method Cost Function Final Value Evaluation Number

SDDA 2.09 3000
SDGA 2.31 2700
GA 2.37 5600

Table 1: Numerical results obtained considering SDDA, SDGA and GA optimization methods , (Center)
value of h0,Nc

of the best element found by the optimization algorithm, (Right) Number of evaluation
of the function h0,Nc

needed by the optimization algorithm.

5 Conclusion

A particular code division multiple access filter based on sampled fiber Bragg grating has been designed
using three particular optimization algorithms: two original semi-deterministic algorithms (SDDA and
SDGA) and a genetic algorithm (GA). The apodization profiles produced by those optimization ap-
proaches exhibit good characteristics for practical implementation because they have no steep variation,
a low maximum index modulation values and small numbers of π-phase shifts. Also, their associated
reflected spectrum are weakly sensitive to perturbations. However, SDDA and SDGA have produced
better solutions and need less computational time than GA alone.

A next step, could be the study of the effect of combined apodization and phase profiles optimization
(Rothenberg J.E. et al., 2002) in order to avoid the symmetry in spectra mentioned previously. During
this work, we have been interested only by apodization optimization to keep a grating easy to implement
by any optical laboratory. Indeed, phase variation requires more complex and expansive materials.

A Matlab c© version of the algorithms presented in this paper are included in the free optimization
package Global Optimization Platform (GOP) which can be downloaded at:

http://www.mat.ucm.es/momat/software.htm.
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